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Abstract 
Accurate representation of diverse skin tones in photography 

has been a longstanding challenge due to biases toward lighter skin 

in traditional reference materials used for film and digital 

photography, such as Kodak’s “Shirley” cards and the Fitzpatrick 

scale. These and other tools, such as the ColorChecker Classic, 

have offered limited ranges of skin tones and do not capture the full 

diversity of human skin, including variations in shades, undertones, 

and exposure behavior. In this study, we evaluate the application of 

the 10-point Monk Skin Tone Scale, developed by Harvard’s Dr. 

Ellis Monk, to camera testing and characterization using printed 

skin tone charts. The Monk scale is applied to color-matched printed 

faces for testing cameras with facial detection capabilities. We 

compare the measured CIELAB values and reflectance spectra of 

these printed targets to those of other commonly used skin tone 

references, and to data measured from real human skin. 

Additionally, we assess the performance of these printed targets in 

photographed scenes in terms of exposure accuracy and color 

reproduction. This research identifies limitations and strengths of 

current printed skin tone scales and charts in representing actual 

human skin tones, and introduces a novel solution for improving 

equitable camera calibration and characterization protocols. 

Background  
Historically, photographic technology has been developed with 

a bias toward lighter skin tones, a limitation that has persisted from 

the era of film photography into the digital age. Early color films 

were chemically optimized to accurately render light skin tones, 

leading to significant exposure issues when capturing darker skin 

tones [1]. This bias was perpetuated through the widespread use of 

the "Shirley cards," which featured a Caucasian woman and were 

used as reference standards for film processing. These cards 

established a photographic norm that prioritized lighter skin, 

contributing to underexposure, poor contrast, and loss of detail in 

images of people with darker skin tones [1]. While the transition to 

digital photography has reduced some of these disparities, biases 

persist, with many cameras still struggling to correctly capture 

darker skin tones, particularly in complex lighting scenarios.  

These shortcomings not only impact image quality but also 

perpetuate racial biases in photographic and machine learning 

applications. Addressing these biases is crucial for developing more 

equitable camera and image processing technologies that better 

serve diverse populations. This research seeks to provide insights 

into how printed skin tone targets can enhance camera testing and 

calibration, leading to fairer imaging practices across all skin tones. 

Introduction  
This research addresses two key challenges in the photographic 

testing of skin tones: (1) the limited diversity of skin tones 

represented in commercially available photographic test targets, and 

(2) the absence of standardized evaluation methods for automatic 

image processing driven by facial recognition in consumer cameras. 

Fig. 1 demonstrates the impact of facial detection on automatic 

exposure adjustment in a consumer web camera. When the scene 

includes “Richard”, a mannequin with a darker skin tone (Fig. 1(a)), 

the camera increases the exposure noticeably compared to a scene 

without a detectable face (Fig. 1(b)) or one featuring “Alexis” a 

mannequin with a lighter skin tone (Fig. 1(c)). As a result, the face 

in Fig. 1(a) is well exposed, but the global adjustment causes the rest 

of the scene to be overexposed. 

 

Figure 1. Three test scenes captured with a consumer web camera under 
identical lighting conditions of 250 Lux, 6200 CCT. Includes (a) “Richard” 
mannequin with dark skin tone, (b) no mannequin, and (c) “Alexis” mannequin 
with light skin tone.  

 The mean CIEDE2000 color difference values, calculated from 

the ColorChecker patches in each scene, are summarized in Table 1. 

As expected, the highest mean error occurs in the scene containing 

Richard due to facial detection-driven exposure adjustments, which 

overexpose the ColorChecker. Notably, the scene containing Alexis 

exhibits a lower mean ΔE value than the scene without a detectable 

face, indicating an improvement in color accuracy when a face with 

a lighter skin tone is placed in a scene.  

Table 1: Mean CIEDE2000 of ColorChecker Patches in 
Mannequin Scenes 

Dark Skin Tone No Mannequin Light Skin Tone 

18.4 9.2 5.9 

This experiment demonstrates the importance of practical 

testing in the development of cameras and image processing 

algorithms that adapt based on detected skin tones. To ensure 

accurate and equitable performance, these technologies must be 

evaluated using diverse, representative faces that reflect real-world 

scene content. However, existing camera test targets often lack both 

the necessary skin tone diversity and the ability to challenge facial 

detection algorithms. To address this gap, we present a novel set of 

face charts designed to represent a broader range of skin tones while 

effectively testing facial detection performance. 

The Monk Skin Tone Scale 
Developed by Ellis Monk in collaboration with Google, the 

Monk Skin Tone (MST) scale [2, 3] consists of 10 distinct skin tone 



 

 

categories, ranging from very light to very dark. Unlike previous 

classification systems, such as the Fitzpatrick Scale [4], which was 

originally designed for dermatological purposes, the MST scale was 

developed to address biases in computer vision and imaging 

technologies, ensuring more equitable representation across diverse 

skin tones.  

As an existing scale with a wide range of tones and readily 

available color value information, the MST scale was an ideal 

candidate for translation into a printed form for this research.  

Methods 

Applying the Monk Skin Tone Scale to Print 
A set of printed test targets featuring detectable human faces 

representing the 10 tones of the Monk Skin Tone (MST) scale was 

created (See Fig. 2). Rather than using images of real human 

subjects, a generative artificial intelligence (AI) tool, Generated 

Photos [5], was employed to efficiently produce a diverse set of 

synthetic faces with skin tones closely corresponding to the MST 

scale. To improve color accuracy and ensure a closer match to the 

Monk tones, additional color adjustments were applied to the 

generated images in Adobe Photoshop before finalizing them for the 

printing process [6].  

A key question in this study is whether these skin tone targets 

can effectively replace actual human subjects in photographic 

testing—specifically, how well these simulated skin tones compare 

to real human skin in both digital reproduction and physical prints. 

The properties of these charts were analyzed with various methods 

shown in the following sections.  

 

 

Figure 2. Ten simulated faces with a range of skin tones based on the Monk 
Skin Tone Scale were created using generative AI and printed for data capture.  

Spectral Reflectance Analysis 
Spectral reflectance in the visible range (400-700nm) was 

measured using an Avantes AvaSpec-ULS2048XL spectrometer 

with an AvaLight-HAL-S-Mini light source. Measurements were 

taken from a neutrally toned area on each face—either the forehead 

or cheek—avoiding regions with simulated shading or highlights. 

The captured reflectance spectra are shown in Fig. 3. 

For comparison, Fig. 4 presents reflectance spectra from the 

Rochester Institute of Technology (RIT) Munsell Color Science Lab 

(MCSL) Lippman 2000 Dataset [7], which includes facial skin 

measurements from 34 subjects across 5 races [8]. Notably, the 

spectra of real human skin exhibit lower reflectance at shorter 

wavelengths compared to the simulated printed skin. Additionally, 

the overall higher reflectance across the visible spectrum, 

particularly in lighter tones, suggests that the printed targets appear 

brighter than natural human skin. These differences highlight 

potential limitations in using printed skin tone targets for color 

accuracy assessments in imaging applications. 

 

 

Figure 3. Visible reflectance spectra of each color-matched face chart.   

 

Figure 4. Visible reflectance spectra of actual human skin, extracted from the 
Munsell Color Science Lab Lippman2000 Dataset.  

Waveform Analysis 
Higher brightness of the Monk tones is further evidenced by 

the IRE (International Radio Engineers) waveforms for scenes 

containing the printed faces. These waveforms—originally 

developed for early television and still widely used in modern 

cinematography—visualize the brightness levels of a video signal or 

frame on a waveform monitor [9]. IRE values range from 0 (pure 

black) to 100 (pure white). A general guideline in cinematography 

and color grading is for skin tones in a naturally lit scene to fall 

between about 40 and 70 IRE for the Rec. 709 (ITU-R 709) color 



 

 

space, depending on the skin tone of the subject(s) in the scene [9, 

10].  

The IRE waveforms for a subset of the simulated faces are 

shown in Fig. 5, revealing brightness levels that exceed the expected 

range of 40-70 IRE. Brief additional experimentation demonstrated 

that when an actual human subject was placed in a scene alongside 

a printed face that they felt best matched their skin tone, the printed 

target appeared overexposed when the scene was properly exposed 

for the real human face. This discrepancy can limit the usability of 

these charts, which are intended to be a more accessible alternative 

to human subjects, if they do not accurately represent skin tones and 

their exposure behavior.  

 

 
Figure 5. IRE waveforms (right) for ROIs (left) of Monk 01 (top) and Monk 06 
(bottom) color-matched face charts. Scenes illuminated at 250 Lux, 6200 CCT, 
captured with Google Pixel 6 Pro. 

Vectorscope Analysis 
We also analyze the color characteristics of the generated faces 

using vectorscopes, a tool frequently used in video post-production 

for visualizing color information in an image. Vectorscopes 

represent hue as an angular position (where 0° is on the positive x-

axis) and saturation as the radial distance from the center, typically 

in a polar YUV space. 

One commonly referenced feature of these scopes in color 

grading is the positive I-line (in-phase component) at 123°, which 

aligns with the orange hues to which human vision is particularly 

sensitive. While the use of the I-line as a strict reference for skin 

tone correction is debated, it remains a useful guideline, as human 

skin tones—regardless of complexion—generally fall near this axis 

under neutral lighting conditions [9, 11]. 

To further evaluate the MST faces, we analyze the color 

distribution of a circular region of interest (ROI) on each face using 

vectorscope readings in DaVinci Resolve, as shown in Fig. 7. The 

results, captured under neutral lighting with a Google Pixel 6 Pro, 

indicate that the simulated skin tones—particularly those in the light 

to mid-tone range—exhibit noticeable shifts toward green, 

extending well beyond the I-line.  

 

 

Improving Printed Skin Tones 
The previous tests reveal that the Monk tones do not accurately 

represent the color and spectral properties of human skin in printed 

form. Two primary issues arise: (1) the hues lean too yellow/green, 

and (2) their brightness is significantly higher than that of actual 

human skin. In terms of the CIELAB color space, this corresponds 

to the L* (lightness) component being too high and the a* (green-

red) component being too low compared to real skin tones. 

To correct these discrepancies, the image files were further 

adjusted in Adobe Photoshop. Working in CIELAB space, the L* 

component is lowered, and the a* component is increased for each 

face. Adjustments were guided by comparing the modified L*a*b* 

values to L*a*b* values derived from the MCSL spectral curves 

(See Section L*a*b* Comparison for details on the conversion to 

CIELAB). This process was iterative, involving several rounds of 

digital modifications, printing, and measurement of the prints to 

improve alignment with real skin tones. 

Spectral Reflectance Analysis 
New spectral reflectance measurements for the color-adjusted 

prints were taken and are shown in Fig. 6. Compared to the spectra 

of actual human skin (see Fig. 4), the adjusted tones now exhibit 

similar spectral shapes and reflectance values across the visible 

spectrum, suggesting an improved representation of real skin tones. 

However, it is important to note that these prints remain susceptible 

to metamerism, meaning their appearance may change under 

different lighting conditions. 

A key characteristic of human skin reflectance is the presence 

of two central valleys at about 540 nm and 577 nm, which 

correspond to the absorption bands of hemoglobin. These influence 

the perception of skin tones under natural and artificial lighting. 

While the printed charts reproduce a similar spectral shape, these 

valleys are shifted to around 530 nm and 560 nm, respectively. This 

shift highlights the challenges of accurately replicating hemoglobin 

absorption using traditional CMYK printing methods, as the limited 

pigments cannot perfectly mimic the selective absorption properties 

of human skin. 

This limitation is particularly relevant for applications 

requiring precise skin tone reproduction. Future improvements may 

involve printing on, or layering, different substrates. 

 

 
Figure 6. Visible reflectance spectra of each adjusted face chart.   



 

 

Waveform Analysis 
Initial test images of the adjusted prints were captured with a 

Google Pixel 9 Pro for analysis. Viewing the IRE waveforms for a 

subset of the faces, shown in Fig. 8, reveals a significant decrease in 

brightness for the adjusted faces, compared to the original faces 

color-matched to the Monk tones (see Fig. 5). Additional test 

captures remain to be taken in order to properly compare the charts 

in identical lighting and capture conditions.  

 

 
Figure 8. IRE waveforms (right) for ROIs (left) of adjusted Monk 01 (top) and 
Monk 06 (bottom) face charts.   

Vectorscope Analysis 
Vectorscope analysis of the adjusted targets (Fig. 9) shows a 

notable improvement in hue accuracy compared to the original 

Monk tone targets (Fig. 7). ROIs in the facial areas now appear on 

or slightly above the I-line, aligning more closely with how actual 

human skin typically registers on a vectorscope.  

However, achieving a more comprehensive representation of 

skin diversity requires further refinement. While the current 

adjustments bring the tones closer to real-world skin hues, they do 

not yet fully account for the natural range of undertones present in 

human skin. To address this, additional modifications are planned to 

expand the range of undertones represented. The goal is to ensure 

that the adjusted targets encompass a broader spectrum to better 

reflect the natural variation in skin tones, from cooler (blue/olive) to 

warmer (red/golden) undertones. 

L*a*b* Comparison 
Multiple new spectral reflectance measurements were taken 

across each adjusted face chart and converted to L*a*b* values (Fig 

10). Spectral reflectance spectra were converted to XYZ using CIE 

1931 color matching functions for a 2° observer, and then to 

CIELAB for the D50 standard illuminant. The original MST L*a*b* 

values are plotted (Fig. 11), along with L*a*b* values derived from 

the MCSL spectral dataset (Fig. 12) and the Pantone SkinTone 

Guide (Fig. 13) which contains 138 shades based on real skin 

measurements, and covers a broad range of lightness levels and 

undertones [12].  

Measurements from the adjusted charts show that the new 

range of tones more closely aligns with the gamut of real skin color. 

Compared to the original MST values, the adjustments result in a  

 

Figure 7. DaVinci Resolve vectorscopes of the Monk tone color-matched face charts. Scenes illuminated at 250 Lux, 6200 CCT, captured with Google Pixel 6 Pro. 



 

 

 

Figure 10. L*a*b* (D50, 2°) values of adjusted skin tones.  

 

Figure 11. L*a*b* (D50, 2°) values of original Monk Skin Tones.  

  

Figure 12. L*a*b* (D50, 2°) values derived from MSCL reflectance spectra 

 

Figure 13. L*a*b* (D50, 2°) values from Pantone SkinTone Guide 

Figure 9. DaVinci Resolve vectorscopes of the color-adjusted face charts  



 

 

more accurate distribution of tones that better reflect natural 

variations in skin color. 

Conclusion  
This study highlights the limitations of existing printed skin 

tone targets, particularly those based on the Monk Skin Tone (MST) 

scale, in accurately representing the color and spectral properties of 

human skin. Initial evaluations revealed that the MST-based printed 

faces exhibited hue shifts toward yellow-green and higher overall 

brightness compared to real skin, leading to inaccuracies in 

photographic testing. Spectral reflectance analysis confirmed these 

discrepancies, showing significant deviations from real skin 

reflectance, particularly in the absorption features of hemoglobin. 

Additionally, IRE waveform and vectorscope analyses 

demonstrated that the printed charts did not accurately reproduce the 

exposure behavior and color characteristics of human skin in 

imaging applications. 

To address these issues, adjustments were made to the printed 

targets using iterative modifications in the CIELAB color space, 

resulting in improved alignment with real skin tones. The refined 

prints demonstrated closer spectral similarity to measured human 

skin data, though metamerism remained a challenge. Further 

refinements, particularly in capturing a broader range of undertones 

and fine-tuning spectral absorption features, are necessary for 

continued improvement. 

The findings of this research emphasize the importance of 

developing more accurate and diverse skin tone references for 

imaging applications, particularly in camera calibration, color 

grading, and machine learning for facial recognition. By improving 

printed skin tone targets, we can contribute to fairer and more 

equitable imaging practices, reducing biases in consumer cameras 

and advancing the representation of diverse skin tones in digital 

imaging. Future work will explore enhanced printing techniques, 

additional adjustments to spectral properties, and expanded datasets 

to ensure even more accurate representation of human skin across a 

variety of imaging scenarios. 
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