Search Results for: MTF
Temporal Analysis of Video Files
Overview Starting in Imatest 4.4, it is possible to perform basic analysis of a video system’s ability to auto focus (AF), auto white balance (AWB) or auto expose an image (AE). Combined, these three tests may be referred to as AAA analysis. Currently, temporal analysis is only compatible with the following modules: Auto Focus: SFR Auto White Balance: Colorcheck Auto Exposure: Stepchart, Arbitrary Charts Mean Normalized Pixel Level (Auto Exposure): CMP DT003, Colorchecker 24, Colorchecker SG, ColorGuage 6×5, RezChecker 6×7, Contrast-Resolution, ChromaDuMonde 28, DreamCatcher 48, EIA Grayscale, 36 Patch Dynamic Range, ISO 14524, ISO 15739, IT8.7, ITEGrayscale, OECF 20, QA-61, […]
SVG Test Charts
Test Charts creates test chart files for printing on high quality inkjet printers. This page focuses on Scalable Vector Graphics (SVG) charts, many of which are used for measuring sharpness (MTF) with Imatest SFR, SFRplus, eSFR ISO, Checkerboard, and SFRreg. (Bitmap charts are described elsewhere.) SVG charts can be printed any size at a printer’s maximum quality (i.e., resolution) with no limitations, and they generally require much less storage than bitmap images. The SVG charts designed for automated testing with SFRplus and eSFR ISO (based on ISO 12233:2014/2017) have numerous advantages over the familiar but obsolete ISO 12233:2000 chart. Most […]
Stray Light Test Considerations
This page describes the technical considerations of stray light testing. Test Assumptions The table below describes assumptions that may be made for stray light testing, along with the associated consequences (if the assumption is not entirely true) and possible improvements to address the consequences. Light Source Collimated vs Diverging Source From a calculation perspective, stray light may be measured with either a diverging or collimated light source. However, for repeatability between test setups, a collimated light source is recommended. Two aspects over which stray light may be measured are the angle of rays and the intersection (translation) of them relative […]
Stray Light (Flare) Documentation
Page Contents This is the landing page for Imatest’s stray light documentation. This page provides an introduction to stray light and how to test for stray light using the small, bright light source approach. It also introduces the concept of “normalized stray light metric images”. See also the Veiling Glare documentation for information about the chart-based approach to measuring veiling glare; a specific form of stray light. Intro to stray light (flare) How to test for stray light Test environment Light source, set up, and alignment Test coverage: extent and sampling Image data Normalized stray light metric images Normalized stray […]
Star Chart
Analyze the Siemens Star chart New in Imatest 2020.1 (Feb. 2020) Shannon information capacity can be calculated from images of the Siemens star, with much better accuracy than slanted-edges. The old slanted-edge method has been deprecated. The white paper, “Camera information capacity: a key performance indicator for Machine Vision and Artificial Intelligence systems“, which briefly introduces information theory, describes the camera information capacity measurement, then shows results (including the effects of artifacts) is now available for download. Imatest 5.0: Half-stars (rotated by multiples of 45º) can now be analyzed. A star-only pattern (without density patches, etc.) can be selected in […]
Spilled Coins, Dead Leaves, and Random Chart Analysis
Analysis of random scale-invariant patterns, including the Spilled Coins (Dead Leaves) Pattern, for measuring texture sharpness Introduction – Obtaining – Photographing – Running – Automatic ROI detection – Output MTF – MTFnn, MTFnnP – Power Spectral Density – Equations & Scale-invariance Related pages: Texture examples – Dead Leaves measurement issue – Random/Dead Leaves cross method Introduction Random/Dead Leaves, which runs under the interactive Rescharts interface or as a fixed (non-interactive, batch-capable) module, measures SFR (Spatial Frequency Response) or MTF (Modulation Transfer Function) from random scale-invariant (or approximately scale-invariant) test charts, including “Dead Leaves” and “Spilled Coins” charts. It is primarily used to measure the effects of signal processing on image texture. […]
Slanted-Edge versus Siemens Star, Part 2
A comparison of sensitivity to signal processing: Results for additional cameras This page contains additional Slanted-edge, Siemens Star, and Log F-Contrast results for four cameras, in support of claims in Slanted-edge versus Siemens Star that Siemens Star MTF measurements are nearly as sensitive to sharpening as low-contrast (4:1) slanted-edge measurements. The Siemens Star’s high contrast (specified at >50:1) makes it quite sensitive to saturation and to “shoulders” (regions of reduced contrast) in camera tonal response. Slanted-edge MTF measurements are stable, reliable, and more representative of perceived image sharpness under a wide range of conditions (in addition to their many well-known […]
Slanted-Edge versus Siemens Star
A comparison of sensitivity to signal processing In this page we address concerns about the sensitivity of slanted-edge patterns to signal processing, especially sharpening, and we correct the misconception that sinusoidal patterns, such as the Siemens star, are insensitive to sharpening, and hence provide more robust and stable MTF measurements. The Siemens Star is of particular interest because, along with the slanted-edge, it is included in the ISO 12233:2014 standard. To summarize our results, we found that sinusoidal patterns are sensitive to sharpening, though often less so than low contrast (4:1) slanted-edges. The relatively high contrast of the Siemens Star […]
Skype video specification support
Instructions and comments We are updating this page for the latest Skype/Lync specification. An index of of the Skype/Lync specifications can be found on http://technet.microsoft.com/en-us/lync/gg278181.aspx. This document contains instructions for using Imatest with the Skype Hardware Certification Specification — For all Skype Video Devices Version 5.0. It also contains comments and suggestions (some of which we hope might be adopted in a future release of the spec). The Skype spec uses only a tiny fraction of Imatest’s powerful capabilities. To learn more, see Image Quality Factors and SFRplus (which allows many factors to be measured from a single image). In […]
Skype for Business Video Specification Support
Instructions and comments Under development We are updating this page for the latest Skype for Business Video Capture Specification, December 2016. An index of of the Skype/Lync specifications can be found on https://technet.microsoft.com/en-us/office/dn788953 This document contains instructions for using Imatest with the Skype for Business Video Capture Specification, which has two versions: personal solutions (Document Number: H100693) and conferencing devices (Document Number: M1023160), published December 2016. “Skype for Business V3.0” appears on a watermark, and 3.0 is indicated in the Revision History (Section 1). It also contains comments and suggestions for running Imatest. The Skype spec uses only a tiny […]
Sharpening
Introduction – Examples – Oversharpening and Undersharpening Examples – Unsharp masking (USM) – Links Introduction to sharpening Sharpening is an important part of digital image processing. It restores some of the sharpness lost in the lens and image sensor. Every digital image benefits from sharpening at some point in its workflow— in the camera, the RAW conversion software, and/or image editor. Sharpening has a bad name with some photographers because it’s overdone in some cameras (mostly low-end compacts and camera phones), resulting in ugly “halo” effects near edges. But it’s entirely beneficial when done properly. Almost every digital camera sharpens images to some degree. Some models […]
Shannon information capacity from Siemens stars
Photographic scientists and engineers stress the fact that no single number satisfactorily describes the ability of a photographic system to reproduce the small-scale attributes of the subject —Leslie Stroebel,John Compton, Ira Current, Richard Zakia Basic Photographic Materials and Processes, Second edition, p. 273 (Micro-image evaluation chapter), Focal Press, 2000 News: Imatest 23.1 contains a new method for calculating the information capacity from slanted-edge patterns, which has been developed and presented in the white paper, “Measuring Camera Information Capacity with Imatest“. The slanted-edge method is faster and more efficient than the Siemens star method, but not as good for measuring artifacts […]
SFRreg INI file reference
For more information on how to use INI files in Imatest IT, we recommend the Imatest INI File Reference This document was created by running sfrreg in Imatest 5.2.0. ALPHA on 31-May-2019 14:48:43. For Imatest IT, most of these entries don’t need to be entered. Many don’t affect Imatest IT results: they control interactive figure displays or figure output formats (figures are often not used in Imatest IT). Background Meaning Yellow Yellow background: Important to Imatest IT. Parameter and Description are in boldface. [IT] Cyan Cyan background: Figure settings. (Figures are used infrequently for IT.) [f] Gray Gray background: For […]
SFRplus special topics: quadrants and saturation
These posts describe several topics, including: SFRplus Quadrant analysis (it includes the center region as well), Saturation analysis, which attempts to estimate the severity of saturation in slanted-edge regions (ROIs), and a few other recent additions (November 2012). Saturation is important because saturated light or dark regions will result in artificially high MTF readings. How to select regions at a fixed distance from center to corner (typically in the range of 65-85%)
SFRplus INI file reference
For more information on how to use INI files in Imatest IT, we recommend the Imatest INI File Reference For Imatest IT, most of these entries don’t need to be entered. Many don’t affect Imatest IT results: they control interactive figure displays or figure output formats (figures are often not used in Imatest IT). Background Meaning Yellow Yellow background: Important to Imatest IT. Parameter and Description are in boldface. [IT] Cyan Cyan background: Figure settings. (Figures are used infrequently for IT.) [f] Gray Gray background: For interactive operation. No effect on IT. Clear Clear background: Results details (units, scaling, etc.) […]
SFRplus and eSFR ISO INI Reference
Since SFRplus (and eventually eSFR ISO, which uses almost all the same settings) is included in IT EXE and DLL, users may sometimes need to examine or edit the INI file used to control IT versions. Most of the settings in the [sfrplus] or [esfriso] section are set by one of the three SFRplus or eSFR ISO Settings windows that can be opened when SFRplus is run in Rescharts (or by clicking SFRplus setup in the Imatest main window). A few are set by responses to other windows or user actions. Settings that affect only Rescharts mode (and hence do […]
SFR results: Multiple ROI (Region of Interest) plot
Imatest SFR allows you to analyze and display several regions of interest (ROIs) in an image. Display options can be selected from three dropdown windows from the SFR settings window. Multi-ROI plots lets you choose the plot type: 1D or 2D; units in Cycles/Pxl, LW/PH (Line Widths per Picture Height), or LP/PH (Line Pairs per Picture Height).The 1D summary plots, which display results as a function of the distance from the image center, may be difficult to read for lenses that are poorly centered and hence have asymmetrical response. In most cases 2D summary plots are far more readable. 1D […]
SFR INI file reference
* indicates that this field will be described in more detail at the bottom of this document (Much of the text at the bottom will be common to several ini file reference pages). For more information on how to use INI files in Imatest IT, we recommend the Imatest INI File Reference For Imatest IT, most of these entries don’t need to be entered. Many don’t affect Imatest IT results: they control interactive figure displays or figure output formats (figures are often not used in Imatest IT). Background Meaning Yellow Yellow background: Important to Imatest IT. Parameter and Description are […]
Rescharts slanted-edge modules Part 4: Other results
Imatest Rescharts slanted-edge modules perform highly automated measurements of several key image quality factors using specially-designed test charts. The user never has to manually select Regions of Interest (ROIs). This page covers results that are (mostly) not derived from the slanted-edges themselves, including Noise (best in eSFR ISO) Distortion (differing detail in different modules; best with SFRplus and eSFR ISO. Described in detail here. Tonal response* (no noise statistics for SFRplus) Color accuracy* when used with an SFRplus, eSFR ISO, or SFRreg center charts that contain a color pattern Vanishing resolution, aliasing, and Moiré from Wedge patterns in eSFR ISO ISO sensitivity* (Saturation-based and […]
Rescharts Slanted-Edge Modules Part 3: Edge Results
Imatest Rescharts slanted-edge modules perform highly automated measurements of several key image quality factors using specially-designed test charts. The user does not need to manually select Regions of Interest (ROIs). This page covers results that are derived from the slanted-edges (i.e., not from grayscale, color, or wedge patterns). It also covers text output (CSV and JSON) files. Sharpness, expressed as Spatial Frequency Response (SFR), also known as the Modulation Transfer Function (MTF), can be displayed in several ways for individual edges or from the entire pattern, Lateral Chromatic Aberration Information capacity Other results, not derived from slanted-edges are covered in Part […]